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The inviscid near-neutral stability of a trailing-vortex flow is investigated by using 
a normal-mode analysis in which all perturbation quantities exhibit a factor 
exp [i(n/3z-&-wt)]. The problem is treated as a timewise-stability problem. The 
dependence of the eigenvalues w on the axial wavenumber 8, which has been 
normalized with respect to the azimuthal wavenumber n, is found both numerically 
and analytically for large values of n in the upper range of values of /3 near l /q ,  where 
near-neutral modes are anticipated to occur. Here q, the swirl parameter of the flow, 
effectively compares the ‘strengths ’ of the swirl and axial components of motion in 
the undisturbed flow. Previous normal-mode analyses based on the same form of 
perturbation quantities have shown that for columnar vortices the unstable modes 
for large values of n are ring modes, and this feature is shown to persist near the upper 
neutral points. In  fact this work on near-neutral ring modes supplements the earlier 
asymptotic theory for large n, which is known to fail near /3 = l /q.  Our numerical 
and asymptotic results are in excellent agreement and are also shown to be consistent 
with the earlier asymptotic theory through matching. It is found that w+O as 
/3+ ( l / q ) - .  

1. Introduction 
Much work has been done during the last 100 years on the stability of both shearing 

and rotating flows. In more recent years Howard & Gupta (1962) investigated the 
stability of inviscid flows between coaxial cylinders in which both rotation and 
shearing are present in the undisturbed flow. In their work the cylindrical polar 
( r ,O,z )  velocity components (0, V ( r ) ,  W(r ) )  and the pressure in the basic flow are 
perturbed as the result of a small disturbance and in a normal-mode analysis of the 
non-axisymmetric case the perturbation quantities are typified by the radial 
perturbation velocity 

The requirement of periodicity restricts n to integer values, and real values of /3 then 
guarantee bounded solutions as I z I --f 00. They reduced the linearized inviscid 
stability problem for such disturbances to a single differential equation in u(r) with 
appropriate boundary conditions. Their formulation was used by Lessen, Singh & 
Paillet (1974), who discussed the stability of a trailing line vortex with undisturbed 
flow modelled on Batchelor’s (1964) similarity solution for an incompressible swirling- 
wake flow. They used a numerical approach to solve the eigenvalue problem that 

u(r)  exp [i(npz-nO-wt)]. (1 .1)  
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arises. In  terms of our somewhat different terminology they found that the modes 
for PV > 0 are more unstable than those for /3 V < 0 and this agrees with the findings 
in other earlier work. For these more unstable modes and the values of n considered 
(1 ,2 ,  . . . , 6 ) ,  they showed that the maximum growth rate of the disturbance for a fixed 
value of the swirl parameter q, defined below in (1.3), increases with n. Their results 
are a useful contribution to what is really required (at least in the linearized 
inviscid-stability problem) - a knowledge of the dependence of w on the parameters 
q,  n and /3. More specifically the structure of w ( P )  is needed for the full range of values 
of q and n. Without loss of generality, only positive values of n will be considered. 

The asymptotic analysis of Leibovich & Stewartson (1983) for n P 1 shows that 
in unbounded vortex flows the maximum growth rate for fixed q continues to increase 
with n, thereby extending the results of Lessen et al. (1974). This theory shows that 
the unstable modes are ring modes concentrated in a small neighbourhood of 
r = ro > 0 and that the unstable disturbances travel along the same helical paths as 
the undisturbed flow. They illustrated their method by applying it to the trailing line 
vortex, comparing their results with numerical calculations that they obtained to 
supplement those of Lessen et al. (1974) as well as those of Duck & Foster (1980). 
There is good agreement over /3 values among the various numerical results for the 
unstable fundamental modes whenever comparisons are possible for the values of q 
and n considered. All these numerical results are in good agreement with the 
asymptotic results at  least near the maximum growth rates and the agreement 
improves over a wider range as n increases. 

Leibovich & Stewartson (1983) were also able to find a sufficient condition for 
instability of a columnar vortex : with S = V/r and f = r V, the flow is unstable to 
inviscid disturbances if 

at  any point of the field ( r  > 0). For the trailing vortex, the flow usually studied 
numerically, we have 

V = - (1 -e+), W = ecr2 (q > O ) ,  (1.3) r 

where q is constant. Since V > 0, (1.2) is equivalent to q2 < 2. This is closely related 
to the range of validity of their asymptotic work, namely !jq < /3 < l /q .  The 
asymptotic theory fails near = $g and /3 = l / q  and the modes appear to become 
nearly neutral in these neighbourhoods. It is the latter neighbourhood that is 
considered in this paper. The mode structure near /3 = $g is the subject of another 
investigation. 

Leibovich & Stewartson point out that the full equations of Howard & Gupta (1962) 
have no solution with wi = 0 and attempt to find /3, numerically such that wi(/3)+0 
as P-+P,. Here wi is the imaginary part of w .  Although the easiest disturbances to 
study analytically are those for n % I ,  it is for small values of n that their numerical 
search for 18, proves to be most likely to succeed. In fact, they remark that ‘the neutral 
modes may be more than “difficult” to compute for large n’.  The reason for the 
difficulty is that the eigenvalues become progressively closer as wi decreases and 
consequently mode-jumping occurs in the numerical procedure as neutral conditions 
are approached. Furthermore, as the asymptotic theory shows, the mode separation 
decreases even further as n increases. The problem is so acute that Leibovich & 
Stewartson have obtained results for small wi (for various values of q )  only for n = 4 
and earlier authors present no data on the matter. 
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The present paper seeks to overcome the difficulties associated with mode-jumping 
and determine the dependence of w on /3 as wi+O, at least for large values of n. A 
scaling appropriate to the neighbourhood of /3 = l /q  in $3 has the effect of separating 
the modes, thereby allowing a successful numerical determination of the mode 
structure in 94. The numerical results valid for 0 < 1 -/3q 4 1 suggest that for the 
fundamental modes w+O as ,9+(l/q)- with the same behaviour for higher modes. 
To help confirm our numerical results and ascertain the analytical structure of modes 
very close to neutral conditions we have carried out an asymptotic analysis in $5 for 
0 < nZ(l -&) Q 1 with n 9 1. Analytical results associated with our numerical 
results for 0 < 1 -bq 4 1 are shown through matching to be consistent with the 
asymptotic work of Leibovich & Stewartson (1983) for which 1 -Bq = O(1). Although 
no new results for n = O(1) have been found there is some evidence to support the 
conjecture that w+O as /3+(l/q)- in this case too. 

2. Resume 
We consider the instability of an unbounded columnar vortex whose velocity 

components [0, V(r) ,  W(r) ]  in the undisturbed state depend only on r ;  V(r )  and W(r)  
are positive functions such that W+O and rV has a finite limit as r+ co. All quan- 
tities are considered to be dimensionless. This vortex is subjected to a weak 
non-axisymmetric disturbance and the perturbation-velocity components and 
pressure that result are each assumed to have a form similar to (l.l), where /3 and 
n are given positive constants with n an integer, while w is a constant to be 
determined. Leibovich & Stewartson (1983) write 

The differential equation for q4 is obtained from that developed for u by Howard & 
Gupta (1962) : 

where 

( 2 . 2 ~ )  

(2.2b) 

y = y ( r )  = nvW(r)-SZ(r)]-w = nA(r)-w, (2 .24 

d /3rzW'(r)-T*(r) 
dr [ r ( l + p r a )  

a = a(r) = r -  (2.2d) 

(2.2e) 

with primes denoting differentiation with respect to r. A typical form of columnar 
vortex is the trailing-vortex flow in (1.3). In  this case 

4/3q( 1 -pq) e-ra (1 - e-**) 
1 +$r2 

b(r) = 
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We wish to find the properties of w for which non-trivial4 can be found to satisfy 
(2 .2)  and the conditions 

$ + O  asr+Oandasr+co.  (2 .4)  

The eigenvalue w depends on the three parameters of the flow q,  n and 8. The 
numerical studies of Lessen, Singh & Paillet (1974) show that the most unstable 
modes occur for ( n p )  n > 0, that is /3 > 0, and it is for this reason that Leibovich & 
Stewartson (1983) consider positive values of p and n. However, there were certain 
limitations in their conclusions which we wish to remove in this paper and another 
in preparation. In  order to explain this we now briefly review their analytic procedure. 
In (2 .2)  K is a rapidly varying function since n % 1. The strategy is to find a point 
r = ro where K is stationary and near which it takes the form 

K = K,+K, ( r - r , )2+K3(r - r0 )3+ . . .  , (2 .5)  

where KO, K,,  . .. are large but independent of r .  The dominant values of q5 are now 
assumed to occur near r = ro so that, when (2.5) is substituted in (2 .2) ,  terms in (r-r,Y 
for j > 2 are neglected. In this approximation 4 may be identified with the Weber 
functions and solutions that decay away from the neighbourhood of r = ro are possible 
only if 

(2 .6)  

where s is a positive integer: s 1. Since KO and K ,  are generally O(n2) ,  this shows 
that, as a first approximation to a necessary condition for an eigensolution, K and 
its first derivative must vanish together (at r = r,).  Examination shows that the 
derivative of K vanishes approximately when 

KO K$ = - (2s- 11, 

A’(r)  = 0, that is /3W(r) = sZ’(r), (2.7) 

b (r )+y2  = 0, that is b(r)+[nA(r)-wI2 = 0. (2 .8)  

and K is also zero then if 

It is (2.7) that yields r, and from (2 .8)  w is related to q,  n and 8 by 

where, for example, b, = b(r,). Thus the vortex is unstable to disturbances with large 
azimuthal wavenumber if b, > 0. 

We may now discuss the limitations mentioned above. There are in fact two 
transitional regions which merit further study. The first arises when the value of r 
defined by (2 .7)  is very small. Then b(r,) is small by virtue of the factor T(r,) in (2 .2e)  
coupled with the need for V(ro) to be small. A necessary and sufficient condition for 
this is 

(2.10) 

which, for the trailing vortex, becomes /? N !jq. The range of ~3 considered by Lei- 
bovich & Stewartson (1983) in their asymptotic theory for that problem, namely 
?jq < @ < l /q ,  along with b, N 0 near r = 0, shows that this region is the neighbour- 
hood of the lower neutral point for a specified value of q. Non-zero disturbances 
centred on r = ro cannot be accommodated as ro+O since 4(0) = 0. In a suitably 
refined analysis of this region it is found that the value of ro in (2.5) is complex. The 
discussion of this region is to appear at a later date. 
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The second transition region arises when the value of r defined by (2.7), although 
not small itself, implies that b(r)  is very small in its neighbourhood, essentially 
through the factor (l-pq) in (2.3). This region, which corresponds to /3+(l/q)-, is 
the neighbourhood of the upper neutral point with which we will be concerned in this 
paper. Here, as well as near the lower neutral point, the requirement K = 0 cannot 
be satisfied without reference to the term containing a(r)  in (2.2b). Moreover, the 
numerical studies of the trailing vortex by Leibovich & Stewartson (1983), like those 
of Duck & Foster (1980), become increasingly more difficult to complete as the upper 
neutral point is approached. Quite apart from the complication due to the fact that, 
as (2.8) clearly shows, y vanishes at a point in the complex r-plane close to the real 
axis, the phenomenon of mode-jumping assumes serious proportions. It is clear from 
(2.6) that there are many modes for fixed /3 and it was shown by Leibovich & 
Stewartson (1983) that the separation in oi between adjacent modes is O(n3bt). Thus 
the possibility of the solution jumping to an adjacent mode as the numerical analyst 
attempts to trace a mode as /3 changes is always a matter for concern and it becomes 
even more serious as b,+O. Indeed all the computations so far reported had to be 
terminated before the neutral points were reached. In  $3  we develop a more refined 
asymptotic theory aimed at allowing us to separate satisfactorily the various modes 
for n B 1 aa the upper neutral point is approached. 

3. Upper-neutral-point analysis 
In  order to study the upper neutral point we need to establish stretchings of the 

variables and parameters for n B 1 that are appropriate to the neighbourhood of the 
neutral point. This is achieved through an order-of-magnitude argument which also 
reveals the limiting processes underlying the asymptotic analysis. To be definite we 
assume that W' and 52' are negative for r > 0, that /3 > Q ' ( O ) / w ' ( O )  and that (2.7) 
has at least one real positive root, say at r = r,. This is certainly the case for the trailing 
vortex and is generally to be expected if the circulation is constant far from the 
axis while the axial velocity is exponentially small there. The asymptotic theory of 
Leibovich & Stewartson (1983) for n B 1 breaks down when b(r) becomes sufficiently 
small to prohibit ignoring the term containing a(r) in (2.2b). Then for values of r 
sufficiently close to r,, 

a b  - N -  

nY Y e ,  
while (2.8) shows y - bk Since a(r) is O(1) near r,, this shows that, near the upper 
neutral point, y - n-l and b - n-2. 

It then follows from (2.3) that the limit process for this inner region of the /3 domain 
is described by 

(3.1) n+ a, /3+(:)-, n2(1 -/3q) = o(I). 

In  the usual way we are led to write 

b(r,) = b, = % 
n2 ' 

where B, is a positive quantity which remains finite under the inner-limit process (3.1). 
Again, remembering that A'(r,) = 0, we write 
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Go = n2A(r0) -nu. (3.4) 

Then Go remains finite under the inner-limit process. It follows from (3.3) that r-r ,  
is O(n-l) and we accordingly introduce the new independent variable 7 defined by 

r = r , + T ,  n (3.5) 

where 7 is O(1). Substitution of (3 .5)  into ( 2 . 2 ~ )  leads to the equation 

where T(7) = Go ++A"(ro) 72, (3.7) 

the error being O(#/n) .  A simpler form of (3 .6)  results from writing 

Go = B8P9 ( 3 . 8 ~ )  

7 = B@ [A"(ro)] -4,  (3.8b) 

c = &@ [/i"(r0)33 (1 +Pr$r; l ,  ( 3 . 8 ~ )  

We find 

(3 .8d)  

(3.9) 

For the trailing vortex A"(r,) > 0 and [is real. For this flow, with the approximation 

e'* = l + r 4 + -  with q2 < 2, ( 3 . 1 0 ~ )  

a, = 4qri e-'f, (3 .  lob) 

/3 l/q, it follows from (2.7) that ro is the positive root of the equation 
r2 

!I2 

and from (3.8) and (3.10b) 

Furthermore, 

( 3 . 1 0 ~ )  

(3.10e) 

where, as in (3.10c), the factor (l-/3q) has been retained. From ( 3 . 1 0 ~ )  we see that, 
as q2 increases from small positive values to the value 2, r, decreases from large values 
to zero. It follows that A > 0 for 0 < q2 < 2 ;  moreover, as q2+2-, A +  and the 
theory breaks down. Henceforth we consider the trailing-vortex-flow model only. 
Then as I 6 I .+ co, the coefficient of # in (3 .9)  tends to a positive constant c2 and in 
order that the properties of # reflect our assumption that the dominant part of the 
solution is confined to the neighbourhood of r = r,, it is necessary to demand that 
# is exponentially small as c-. f 00. We are thus faced with an eigenvalue problem 
from which p can be found as a function of the two parameters A and C. Whereas 
the problem associated with ( 2 . 2 ~ )  implies a dependence of w on n as well as the two 
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parameters q and p, there is no dependence of p on n implied by (3.9) since i t  has 
been obtained from (2.2) through stretching transformations and by retaining only 
the coefficients of terms of highest order in n. 

Now under the limit process (3.1) we see that A and C are each O(1). Of course 
it is quite in order to consider intermediate and outer-limit processes in which C+ 00 

as n+m and this we will soon do. In a related way, although in the refinement 
associated with (3.1) we have seen that r -r ,  is O(n-l), when /3 decreases from l / q  
with 1 -pq increasing from O(n-,) through intermediate orders until it  is O(l ) ,  we 
find r-rO haa increased to O(n-3) and this is confirmed by the analysis of Leibovich 
& Stewartson (1983). When l-pq and r-ro are of these respective larger orders, 
consideration of the orders of magnitude in (3.5) and (3.8) reveals that C = O ( C 3 ) .  
Thus, when C is large and positive, (3.9) may be solved by writing 3 = q /& and 
expanding both $ and p as series in descending powers of C, namely 

(3.11) 

When these forms are substituted into (3.9) it  follows immediately that p i  = - 1. 
We choose p, = - i for unstable modes. Not only is this necessary for consistency here 
but also for consistency with the Leibovich-Stewartson results with which a match 
is essential, though expected to be automatic. This matter is referred to again in $6. 
The equation for $k (k 3 0) is 

(3.12) 

where Ho = 0, Lo = 0; for k 2 1, f i k  = 1 and Lk is a series in $,(q) with 0 < j < k- 1 
whose coefficients are polynomials in p, and q2. For consistency with the vanishing 
of $ at infinity, noting that I q I --+ 00 as I C I + 00, we have 

pl =-+(28-1)(1-i), (3.13) 

where, as before, 8 takes all positive integer values. Then $, is a Weber function and 
in particular 

(3.14) 

(3.15) 

The computations of p k  and $k may now be carried out progressively and a t  each 
stage p k  is fixed by the consistency requirement that $ vanish at infinity. We find 
in particular 

p ,  = &-+A if s = 1, (3.16) 

p, = $-+A if s = 2. (3.17) 

These correspond respectively to the first even and first odd eigensolutions. An 
important issue here is the separation of the many modes over a range of values of 
C. As remarked above, when Bo is sufficiently large and hence C, a match with the 
results in 2 is achieved since p ,  = -i leads again to wi - bfo. The mode separation 

by using (3.9) and the associated results. This is because at a fixed value of A, as 
b, decreases, C also decreases and correspondingly, as determined by the term (pl)i/C 
in (3.1 l),  the mode separation in pi improves. Thus we anticipate that the properties 
of the modes as C decreases over a suitable range of values will be readily found by 

$, = exp [ -+(l +i) q2] 

$, = q exp [ -+( 1 + i) q2] 

if s = 1, 

if s = 2. 

in wi is O( bff , n d )  but the difficulty in distinguishing between modes as b,+O is averted 
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solving (3.9) numerically under suitable conditions at  infinity. Although the numerical 
work of Leibovich & Stewartson (1983) suggests that the neutral point for specified 
A (or q)  may occur at a positive (specifically non-zero) value of C, their results are 
not expected to be reliable in this region. For the reasons stated the numerical results 
based on the solution of (3.9) as described in $4 are expected to be more reliable. 
Moreover, application of the standard procedure in Rayleigh's theorem to (3.9) leads 

(3.18) 

Now PA-' may be scaled out of this equation by writing C = heCZA-' and 
p = pPA-'. Then, for pi + 0, the integral that results must vanish. Thus for C+O+ 
we must have that p is O(CBA-') and in particular pr must be negative and precisely 
of this order, while pi may well be of even lower order. In fact, as completing the 
square shows, 

Ip, 1 < PA-'.  (3.19) 

It is therefore not unreasonable to expect even more strongly that the neutral points 
of the modes we have been discussing will all occur at positive values of C which may 
nevertheless be quite small. All these conclusions from (3.18) are confirmed by the 
numerical results and analysis described in the sections that follow except that the 
neutral points are found not to occur at positive values of C but rather as C+O+. 

4. Numerical determination of the upper near-neutral modes 
For a given trailing-vortex flow, q is known and A is found from (3.10d). With A 

fixed in this way, p depends on only one parameter C. Our object then is to supplement 
the work of Leibovich & Stewartson (1983) by computing the eigenvalues in (3.9) for 
progressively smaller values of C. An attempt to approach the critical value C = C, 
such that p,+O as C+C, leads to a result which, in view of the previously published 
numerical work, and the expectation that C, > 0, is very interesting. In  fact it is found 
that no neutral mode is reached before C becomes zero. With A fixed, both even and 
odd eigensolutions are considered for each value of C; for the former # ( O ) ,  and for 
the latter &O) is normalized to unity, where &[) = d$/dC. For each, the condition 
that # be exponentially small as [-+ 00 is incorporated in the numerical procedure 
by writing 

where the substitution x = 4 is used in writing (3.9) as a system of first-order 
differential equations and CN is the terminal point in the numerical process. Then for 
fixed values of C and p the system is approximated by using the trapezium rule in 
the manner described by Cebeci & Bradshaw (1977) under the name of the box 
method. Gaussian elimination efficiently reduces the coefficient matrix (a band matrix 
of bandwidth 5 )  to upper triangular form. Integration along the real-[-axis is 
satisfactory except for marginally unstable modes. For these the singularity at 
[ = ( - p $  in (3.9) lies close to the real axis and in the first quadrant of the 5-plane. 
For such modes the contour of integration must be deformed to lie below the real-5-axis. 
A contour of suitable though somewhat elaborate form is given by 

f = 5- i K ( 1  + P i )  5 exp [-Re + P)2)l t  (4.2) 

where = Re (5)  and K is a positive contour control factor. As I pi I decreases towards 
zero (in the procedure described below) the contour shape is further controlled by 
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the factor (1 +pi), which remains positive. Values of K between 2.0 and 3.5 produce 
contours which, for our purposes, do not approach too closely the singularity in the 
first or third quadrant where F +p vanishes. A non-uniform grid along the &axis is 
used. Typically we use eight step sizes ranging from 0.00 125 to 10, the former where 
the solution changes rapidly as the contour skirts the singularity, the latter for large 
values of 6. A check on convergence using successive halving of step size shows that, for 
all the values of A and C considered (except possibly for quite small values of C), 
three-figure accuracy in # and # is guaranteed when 418 grid points are used. It 
is further found that if && is given different values in the range 60 < cN < 90 this 
accuracy is retained. The value we used most commonly is CN = 67. 

For a fixed value of C, Newton's method is used in an iteration on p leading to 
a final estimate that results in values of &O) and # ( O )  (for even and odd eigensolutions 
respectively) of typical size lo-". To initiate the Newton procedure at a starting value 
of C, an adequate approximation to the eigenvalue is obtained from (3.11) (which 
is appropriate for large values of C) by truncating the series for p after two terms; 
for example, for the first even eigensolution, s = 1 and the initial estimate is 

The corrected value obtained from this is used as the initial estimate of p for a smaller 
neighbouring value of C and the corresponding accurate value is found. For 
decreasing values of C the continuation method, using linear extrapolation, then 
provides successive initial estimates for the p-iterations. Added confidence in our 
findings has been gained through continual checks on detailed results for both the 
iteration on p and the eigenfunction # for various values of C. Typically, for the 
monitored step lengths in C used, up to three or four iterations are needed to produce 
the small values of &O) or # ( O )  mentioned above. 

A FORTRAN program, written in complex mode, deals with both the solution of 
the equation and the continuation process for a specified value of A. A convenient 
test case for each value of 8 considered (s = 1 , 2 , 3 )  is A = 1. Although this value 
corresponds to a complex value of q i t  leads to results with the same essential features 
as those for physically meaningful flows (see figures 1 and 2). Thus, using C = 5 as 
a starting value in this test case, we have as an initial approximation p z -0.1-0.9i 
for the first even eigensolution, corresponding to s = 1. Our most extensive results 
are in fact for the first even eigensolution and these have been obtained for q = 0.4, 
0.8, 1.0, 1.2 as well as for the test case A = 1. The program was also run for s = 2 , 3  
but only with A = 1 .  

For the step lengths in C used, no evidence of mode-jumping appears. However, 
to maintain accuracy, it is necessary to reduce the step length (- AC) progressively 
for smaller values of C. In  the test case, for example, AC = -0.05 at C = 0.65 and 
AC = -0.0125 at C = 0.30. It is also necessary to transfer to double precision; in the 
test case this was done for C < 1. Indeed it is found that as C+O+ the singularity 
at < = ( - p $  moves very close to the origin of y, the initial point on the contour of 
integration. It is only then that the numerical results eventually become unreliable. 
Typical features of the numerical results appear clearly in the various tables and 
graphs we have prepared, some of which are presented in this paper. Discussion of 
the significance of the numerical work is deferred briefly. 
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FIGURE 1. Scaled growth rates -p,  for n B 1 for the trailing vortex computed numerically aa 
functions of C a: ni (1 -/?q)f by the method of $4: (a) curves for fundamental modes (8  = 1) for A = 1 
(q complex) and q = 0.4,l .O, 1.2 as shown; (b) curves for the first three modes ( 8  = 1,2,3) for A = 1. 

5. Stability analysis very near the upper neutral point 
The numerical results of the previous section, as displayed in figures 1 and 2, 

indicate that an asymptotic analysis should be developed to reveal the analytic 
dependence of p on C as C-tO,. The conclusion from (3.18) that p is O(C2k1) also 
indicates this. We now describe such an analysis with special attention to the case 
of the first even eigensolution; an asymptotic formula relating p to C is obtained for 
this cme. A similar formula associated with the first odd eigensolution has also been 
found. The second even eigensolution is considered briefly. 

The singularity in (3.9) is dealt with by first writing p = -P and g = f i t ;  the 
equation becomes 
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C 

FIGURE 2. Comparison of numerically computed (-) and ctsymptotic (---) scaled growth rates 
-pi for n % 1 for small values of C with A = 1 for the upper pair of curves and A = 2 for the lower 
pair. 

Since the evidence is that Ipl is small when C is small, the solution $4 is being 
considered in a small region in which [ = O( (p  It). The behaviour of 4 near t = f 1 
suggests writing 

$4 = $(t) (1 - tZ)-P, (5.2) 

where 0 = 4p&+ 1) P. (5.3) 

We then obtain 

(5.4) 
d2$ d$ (1 - t 2 )  dt2 + 4,& - = $[ (1 - t 2 )  Cap- A - 2~ + 4p@ + 1 )]. 

dt 

Ignoring C P  and writing 2 = ta we convert this to the hypergeometric equation 

the properties of which are listed by Abramowitz & Stegun (1968). The solution of 
(5.5) leading to even eigensolutions $4 is the hypergeometric function F(a,  b ;  c ;  2). 
Choosing b > a we have 

$ = F( -2N-p-i’  4 N - p - i .  ’ 2 ,  1.8) ’ (5.6) 

where N = (A+i)k (5.7) 

The ‘inner’ solution q5 in (5.2) obtained in this way is expected to match (as t -+ 00) 

with terms in an ‘outer’ solution and in anticipation of this we find for I t2 I % 1 and 
(arg(-t*)( < z  

$4 = ( - t 2 ) ” ( 1 - t - ~ ) - ~ { C O ( - t 2 ) m ~ C 1 + d o ( - t 2 ) ~ ~ C 2 } ,  (5 .8)  
where 

13 
m, = +N+,u+a, m2 = -?jN+p+: 

F L M  156 
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and C, and C, are power series in t-,, each with leading-term unity. Again 
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d ( N -  l)! d( - N- 1) ! 

[ - ~ N - ( p + 5 ) ] ! [ - ~ N + ( p - a ) ] ! ’  
co = do = (5.9) 

[+N- (p + 3 1  ! [ iN+  (p - $ 3  ! ’ 
We turn our attention now to the ‘outer’ region, for which we write C[ = O( 1) with 

$ + O  as I[I+co. Then (3.9) leads to 

(5.10) 

The solution that decays at infinity is 

- z-N(cO1 7 (5.11) 

and when the modified Bessel functions are expressed as ascending series (Abramowitz 
& Stegun), we find 

$([) = CN* x C k p k + [ - N + i  D k c k ,  (5.12) 

where C, and Dk are known. When only the leading term in each series is considered, 
the terms obtained, 

m m 

k - 0  k - 0  

(5.13) 

can be matched with similarly retained terms in (5.8) when these are expressed in 
terms of [: 

(5.14) 

The matching powers have already led to (5.13) and (5.14); to complete the match 
we require 

(5.15) 

Now N > 0 and 1 PI < 1 so that to leading order co = 0. Thus from (5.9), since by 
choice p > 0, we must have +N- (p +a) equal to zero or a negative integer, -m say; 
then 

p x po = +N+m-$ (m 2 O), (5.16) 

and F reduces to a polynomial of degree m. Let 

p = po+e = ,uo+e,+iei, (5.17) 

where I e I < 1. In terms of C, the gauge parameter in this section, it turns out that 
E, = O(C4) and ei = O(CgN).  The leading-order contribution to P, as obtained from 
(5.3), is 

(5.18) 

which is real. The leading-order contribution to pi may be extracted from the 
matching condition (5.15), which yields 

, N P f  e-””n(N+m-+)! (N+m)! ‘ = (p sin Nn [N! ( N -  1) !I2 m ! (m - 2) ! ’ (5.19) 
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where we have used the result 

(5.20) 

based on the assumption, which turns out to be consistent as will be seen below, that 
P (and hence w )  has a small positive imaginary part. Since the term ignored in (5.1), 
namely C2P, is O(C4) it  will lead to a contribution to e in (5.17), the real part of which 
is O(C4), and this is larger than the order, O(C4N), in (5.19). Thus only the imaginary 
part of (5.19) is relevant. Hence 

(5.21) 

From (5.21), (5.17), (5.3) and the fact that p = -P, we obtain 

(5.22) 

This is consistent with our assumption above and also with the sign of pi  in our 
numerical results, namely pi  < 0. If pi in (5.22) had turned out to be positive, the 
result would have been inconsistent with the assumption under which it was derived 
and we should then have concluded that (3.9) has no eigensolutions for sufficiently 
small values of C. This would imply that for n % 1 the (even) modes of the problem 
in (2.2) and (2.4) cease to exist before p attains the value l /q.  However, the results 
of this section show that this is not the case and that for all even modes wi+O+ as 
B-+ ( l /q) -  at the upper neutral point when n is large and the same is found to hold 
for the odd modes. 

In the case m = 0 (that is for the first even mode), cr is related to C by writing 

11- = $0 + c4$1 + o(c4) 9 (5.23) 

with $o = 1 and retaining the term O(C4) in (5.4), namely C2P z @Po. In solving the 
resulting first-order equation in d$,/dt, we demand that d+,/dt is an odd function 
oft and is proportional to t as t -+ XI. The correction is continued analytically through 
t = 1 by use of the relation 

X ( N +  m-i) ! ( N +  m )  ! (2p0 + 1) c4"+2 
42N+"N! ( N -  1)!]2m! ( m - i ) !  bobo+ 1)]N+2' 

p .  = - 

I l - t 2 1 "  (t < l) ,  

It2-11veivn ( t >  1) 
( l - t 2 ) "  = (5.24) 

for any constant v. In  fact (5.24) is equivalent to (5.20) and is derived on the same 
assumption, namely that P has a small positive imaginary part. For the lowest mode, 
this approach yields 

and, after use is made of (5.3), the formula for p in this mode is found to be 

p = - p x -  c2 (2PO+1)@ 
4~0010 + 1) - SP;(~~P: - 1) + 1 

(5.25) 

X ( N - ; )  N !  (2P0 + 1) c 4 ~ + 2  
-1 42N+1"! ( N -  1 )  !]2 ( - 4) ! bo(po + l)]N+2 ' (5.26) 

13-2 
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which gives the leading term of pi and the first two terms of p ,  except in the case 
where N is an integer. In  that case the imaginary term in (5.26) is correct, as is the 
term O(c2)  in the real part. However, when N is an integer, Co/Do in (5.13) is singular 
and, although p i  may be obtained from the values for non-integer values of N by 
letting N tend to an integer, the real part of 8 obtained from (5.19) does not have 
a finite limit. The reason is that in this situation p ,  contains a term O(Ce logC); 
however, for our purposes this is just a detail and receives no further attention. 

This first eigenvalue corresponding tom = 0 as given by (5.26) depends on q through 
p0 and N. Results for several values of q have been favourably compared with the 
corresponding numerical results. Tables have been prepared to illustrate the com- 
parison, and table 1 is an examp1e.t A formula similar to (5.26) has been developed 
(but not presented here) for the eigenvalues related to the odd eigenfunctions of lowest 
order. Further consideration of this has been restricted to a comparison with the 
numerical results for the ‘test case ’ A = 1. Again for the first odd and second even 
eigensolution only the imaginary correction term for the eigenvalues has been found, 
thus providing a check on the numerical values of pi calculated for A = 1.  No further 
details of the analysis for the higher modes are presented here. We simply observe 
that (5.26) and all other such results that we have obtained are consistent with the 
comparison of p and C as deduced from (3.18). 

6. Comparison of results 
Our numerical results, both for the fundamental and higher modes, all show the 

same qualitative dependence of p on C. This dependence is illustrated for the scaled 
growth rate ( - p i )  in figure 1 : the curves in figure 1 ( a )  are for fundamental modes, 
the uppermost curve corresponding to A = 1 (q complex), the other three corresponding 
to the physically meaningful values of the swirl parameter, q = 0.4 , l  .O, 1.2. The curve 
for the fundamental mode for A = 1 is repeated in figure 1 (b) (the uppermost curve), 
the other curves being for the next two lower modes again for A = 1. In  essence, C4 
(strictly C4/nz)  shows how far B falls short of l / q .  It is worth noting that figure 1 (b) 
conveniently illustrates the separation of the modes achieved by the analysis of $3. 
The curves in figure 1 ,  as well as others not presented here, all have the same essential 
features and the consistency is both convincing and encouraging. 

Now (3.9) results from a limit process in which C = O(1) and the numerical process 
in $4 is initiated at large values of C and continued as far as possible towards C = 0. 
To start the process with C suitably large, an approximate value of p was obtained 
from the first two terms in (3.11) which is valid for C % 1 so that good agreement 
between the asymptotic results for p and our numerical results in the upper range 
of C is to be expected. It is important to check this agreement but it is more important 
to compare the numerical results in the lower range of C with the asymptotic results 
for C + 1 because for such values of C it was conjectured from the numerical results 
that ( p ,  I K Cz (approximately) and i t  was this conjecture that led to the theory for 
small C in $5.  The comparisons for both small and large values of C are contained 
in the upper and lower sections respectively of a series of tables which list sample 
values of p .  Table 1 for the test case A = 1 illustrates the typical features of these 
tables. The asymptotic valuesprAS +ipiAS are found from the first three terms of (3.11) 
for large C and, for the fundamental modes, from (5.26) for small C .  The numerical 
values are listed under p,, and p i N .  Table 1 refers to fundamental modes. For both 

t The other tables in the series are available on request from the Editorial Office of the Journal. 



Stability of ring modes in a trailing line vortex 383 

C PrN %AS PiN PiAS 

0.15 -0.0139 -0.0139 -2.26 x lo-' - 2 . 3 8 ~  lo-' 
0.20 -0.0248 -0.0248 - 1 . 5 0 ~  - 1 . 5 5 ~  lo-' 
0.30 -0.0564 -0.0569 -2.24 x lo-* -2.11 x 
0.40 -0.1029 -0.1062 -l.60X10-a - 1 . 3 6 ~  lo-' 
0.80 -0.4199 -0.8645 -2.21 x lo-' -1.21 X lo-' 

1.00 -0.418 -0.438 -4.20 x lo-' -5.00 x lo-' 
3.00 -0.162 -0.160 -8.33 X lo-' -8.33 X lo-' 
5.00 -0.098 -0.100 -9.00 x 10-1 -9.00 x 10-1 

TABLE 1. Comparison of numerically computed eigenvalues p,, + ipiN with asymptotic values, 
prAS +ipias calculated from the results of $5 for the upper sections of the table and from the results 
of $3 for the lower sections: the catx of the first even eigensolution with A = 1 

large and small values of C the agreement throughout is very satisfactory indeed and, 
as illustrated in table 1, is seen to improve as C decreases through small values in 
the upper sections of the tables and also as C increases through large values in the 
lower sections. A crude check on the tabulated values of p for C large shows that the 
comparison is not inconsistent with the error O ( C 3 )  which is expected from the use 
we have made of (3.11) and (3.16). Comparisons for all cases, for higher modes as well 
as fundamental modes, are equally convincing. So excellent is the agreement 
throughout the tables between prAS and p,, for C -4 1 that no graphical comparison 
is made. Figure 2 compares piAS (----) for C -4 1 with piN in the cwes A = 1 (the 
upper pair of curves) and A = 2 (the lower pair). For the latter case q = 0. The 
improving agreement as C decreases is obvious. Thus our numerical results for the 
eigenvalue dependence on C are not only qualitatively self-consistent over the set of 
q values considered but are also in excellent agreement with the asymptotic formulae 
forC-4 1 a n d C %  1. 

There remains the task of relating our results to those of earlier researchers. Since 
our results apply to a neighbourhood of the upper neutral point with n2( 1 -pq) = O( 1) 
as n-tm and /3+(l/q)-, it  is appropriate to relate them to the asymptotic theory 
of Leibovich & Stewartson (1983), for which (l-pq) = O(1) as n+m. Under an 
intermediate-limit process p+ (l/q)- and C+ oc) and although we have no formal 
inner expansion for p in terms of C,  and in particular no leading term, such a term, 
when suitably expressed for large C - as in (3.11) - and after conversion to w ,  would 
be expected to match with the Leibovich & Stewartson result for w ,  namely 

w, = -ne-';[ & + q - / 3 ] + n f l / + f l - n - 1 1 ' , + n ~ l / f r 3 + O ( n - 2 ) ,  (6.2) 

when /3 is allowed to approach l /q  in these expansions. These are the equations (4.39) 
and (4.40) given by Leibovich & Stewartson (1983), amended here for typographical 
errors. Here A, = +A@(r,J and the other symbols are defined by them, the details being 
unnecessary for our purposes. Consider the first three terms of (3.1 1 ) , valid for C % 1, 
which for s = 1 yields 

(6.3) 

The imaginary part of this is found to match precisely with (6.1) to order n-i. The 
real part of (6.3) matches (6.2) up to and including all terms of order n-l except a 

p k: - i-f( 1 -i) C-' + (&-+A) C-,. 
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FIGURE 3. Growth rates oi for n = 4 plotted against 6 = 1/q- /3  for the trailing vortex for q = 0.8, 
1 .O, 1.2 : -, results computed numerically by Leibovich & Stewartson (1983) ; --, our numerical 
results computed by the method of $4. 

contribution n-'b;/( 16A, b,) which appears in the expression for A ,  presented by 
Leibovich & Stewartson. Thus our upper-neutral-point analysis, including the 
numerical results, is consistent with the earlier asymptotic theory of Leibovich & 
Stewartson (1983), which it in fact supplements. 

The question of a direct comparison of our results with earlier numerical results does 
not arise since our results apply with n % 1 for B x l / q  where wi is small whereas 
earlier results are for n finite and /3 is not near l /q .  The only results previously 
obtained for small wi are those of Leibovich & Stewartson (1983) for the case = 4.  
Even in this case PC cannot be predicted with any confidence on the evidence 
presented by them. A supplementary investigation for finite n is not easy and we 
attempt to use the results for n B 1 to assess the likely qualitative structure of 
near-neutral modes for n = O(1). To this end we formally transform the p,, C 
dependence to w ,  p dependence using (3.10e) and 

w = nq-'e-r;4[1-q2- r,] 2 - 2pr, e-ff(l -Pq)i, (6.4) 

which follows from (3 .2) ,  (3.4) and ( 3 . 8 ~ ) .  The dependence is presented graphically 
(--) in figures 3 and 4 by plotting wi and P - q - o , / n  = y,(O) against 6 = l / q - P .  
This is done for various values of q in the case n = 4 .  The unbroken curves in 
figures 3 and 4 have been plotted from tabulated results supplied by Leibovich & 
Stewartson. 

7. Discussion 
The investigation of the linearized inviscid stability problem for the trailing vortex 

is a step towards discovering the role played by hydrodynamic instabilities in 
nonlinear phenomena, such as vortex breakdown, that occur in concentrated vortex 
flows. Even when viscous and nonlinear effects are ignored the difficulties in the 
resulting linearized treatment of unbounded columnar vortices are far from trivial 



Stability of ring modes in a trailing line vortex 

0.7 

0.6 

0.5 

p. 0.4 . 
d 0.3 

0.2 

0.1 

0.0 

-0.1 

-0.2 

I 

385 

- -. 
- 1 

1 0 . 8  
- '. 

1 .O ---- --_ 
- 
- 

- 1 1, 1.2 ~ 

- 
- 

-0.3 I I I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 
6 = 1 f q - p  

FIGURE 4. Real frequencies of unstable modes corresponding to figure 3. 

and any simplifying feature is welcome. When the modes for /3V > 0 (which are more 
unstable than those for /3V < 0) are investigated, some simplification results by 
considering large values of n as shown by Leibovich & Stewartson (1983) in their 
asymptotic analysis of such flows and illustrated by them in the case of the trailing 
vortex. Even so, their analysis is valid only for the most unstable modes. For these 
!jq < p < l / q  with /3 sufficiently distant from the end points of this interval. Their 
theory for general vortex flows breaks down as /3+ (l /q)- since then b(r)+O for all r.  

As Leibovich & Stewartson (1983) point out, in the trailing-vortex flow a 2 0 for 
all /3 provided q 2 t and from the criterion for instability, 

they deduce that yr b(r) must be negative in some interval of r .  Now b(r)  = 0 if /3 
satisfies /3q = 1 ,  for any specified q < 4 2 .  In  these circumstances a(r)  > 0 provided 
q > 0, rather than q > 2, and there are then no unstable modes for their trailing-vortex 
problem for large n. This property continues to apply as q+O+ with /3+ 00. There 
is no evidence from any of the numerical studies that unstable modes occur for 
/3 > l / q  when 0 < q < 4 2  and our numerical work throws no light on this matter. 
With wi = 0, (2.2a) is singular at the critical layer. The equation is rendered 
non-singular by the inclusion of the viscous or time-dependent term. However, in our 
approach we have attempted to find /3, numerically by effecting the limiting process 
wi(/3) -to as /3+/3, by an extrapolation towards the oi = 0 axis. No earlier attempt 
to do this has been successful but the stretchings we have introduced for small 6 lead 
to the interesting result wi+O as /3+(l /q)- .  Moreover, w,+O in this limit though 
less rapidly than wi. The stretchings used apply even for small values of q with /3 in 
the neighbourhood of infinity. The governing equations apply even for q = 0 provided 
we let A = 2 in (3.10d) since, as q + O ,  ro+ 00 as ( 3 . 1 0 ~ )  shows. Our results for q = 0, 
both asymptotic and numerical, show that the disturbances approach neutral 
stability as C+O, that is /3+ 00, with a similar structure as for q > 0. For q = 0, the 
flow is unstable for 0 < /3 < 00. 

The excellent agreement between our numerical and asymptotic results for both 
C 9 1 and C < 1 ,  as well as the agreement between our results and the asymptotic 
results of Leibovich & Stewartson (1983), strongly support our claim that we have 
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obtained a correct description of the near-neutral structure of the unstable modes 
near B = l /q  for large azimuthal wavenumbers. Our results also provide convincing 
evidence that the higher modes have a similar structure to the fundamental mode. 
They become progressively less unstable as the order increases rather than neutrally 
stable as Duck & Foster (1980) suggest in the case of n = O( 1).  Because of the lack 
of data from earlier investigations no comparison with other numerical results is 
possible, except perhaps for n = 4. The need for /? steps sufficiently small to avert 
mode-jumping makes the computations from the full equations very costly for that 
case and even worse for n = 5,6 ,  . . . . It is this very difficulty that has led to the 
present investigation, the results of which give the only available information on the 
structure of the near-neutral modes. Our results match the asymptotic results of 
Leibovich & Stewartson (1983) and these in turn do agree more closely with the earlier 
numerical data as n increases. We infer that our results would also agree more closely 
with such data if they were extended further towards /3 = l /q .  The curves for our 
results suggest that a ‘tail’ should develop on the Leibovich-Stewartson curves in 
figure 3 and such a feature does begin to appear for q = 0.8 and 1.0. It is conjectured 
that for n = 0(1 )  we again have w+O as /3+(l/q)-. A study of the upper neutral 
points for such n is now under consideration. Another investigation of the modal 
structure near /3 = & is currently being carried out. 
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‘ I t  was fun.’ 

REFERENCES 

ABRAMOWITZ, M. & STEQUN, I. A. 1968 Handbook of Mathemtical Functions with Formulas, Graphs, 

BATCHELOR, G. K.  1964 Axial flow in trailing line vortices. J .  Fluid Mech. 20, 645-658. 
CEBECI, T. & BRADSHAW, P. 1977 Momentum Transfer in Boundary Layers. McGraw-Hill. 
DUCK, P. W. & FOSTER, M. R. 1980 The inviscid stability of a trailing line vortex. 2. angezu. Math. 

Phys. 31, 524-532. 
HOWARD, L. N. & GUPTA, A. S. 1962 On the hydrodynamic and hydromagnetic stability of 

swirling flows. J .  Fluid Mech. 14, 463476. 
LEIBOVICH, S. & STEWARTSON, K.  1983 A sufficient condition for instability of columnar vortices. 

J .  Fluid Mech. 126, 335-356. 
LESSEN, M., SINQH, P. J. & PAILLET, F. 1974 The stability of a trailing line vortex. J .  n u i d  Mech. 

6 3 ,  753-763. 

and Mathematical Tables. United States National Bureau of Standards. 


